গ্যাসের বিভিন্ন প্রকারের আণবিক গতিবেগ

যেকোন গ্যাসের নমুনায় অনেক অণু বিদ্যমান থাকে। অণুসমূহের মধ্যে অবিরাম সংঘর্ষের ফলে তাদের মোট গতি শক্তির কোন পরিবর্তন না হলেও বিভিন্ন অণুর গতিবেগের পরিবর্তন হয়। এ সব অণুর গতিবেগ কোন সময় সমান নয়, কোন মুহূর্তে একটি অণুর গতিবেগ প্রায় শূন্য হতে পারে, সে সময় আরেকটি অণুর গতিবেগ তা অপেক্ষা কয়েকশ গুণ বেশি হতে পারে। পর মুহূর্তে প্রায় নিশ্চল অণুটি খুব দ্রুতগতি সম্পন্ন হতে পারে। দ্রুততর অণুটি একসময় শ্লথ হয়ে যেতে পারে, অথবা আরো দ্রুততরও হতে পারে। এ অবস্থায় কোন অণুর গতিবেগ নির্দিষ্ট করে বলা সম্ভব নয়। তবে তাদের গড় গতিবেগ হিসাব করা যায়। অপরদিকে বিভিন্ন ধরনের গড় হিসাব করা যায়।

 

গড় গতিবেগ (Mean Velocity)

কোন গ্যাসের অণুসমূহের বিভিন্ন গতিবেগের পাটীগণিতীয় গড়কে সে গ্যাসের অণুসমূহের গড় গতিবেগ বলা হয়। মনে করি, একটি গ্যাসাধারে গ্যাসের N সংখ্যক অণু আছে, তাদের গতিবেগ যথাক্রমে c1, c2, c3, c4…..cN, সেক্ষেত্রে গড় গতিবেগ

c = (c1 + c2 + c3 +…….+ cN) / N

গড় বেগ (C) কে নিম্ন সমীকরণ দ্বারাও প্রকাশ করা হয়-

c = √(8RT / πM)

 

বর্গমূল-গড়-বৰ্গবেগ বা RMS বেগ

কোন গ্যাসের অণুসমূহের গতিবেগের বর্গের গড় মানের বর্গমূলকে গ্যাসটির অণুসমূহের বর্গমূল-গড়-বর্গবেগ বা RMS বেগ (root mean square velocity) বলা হয়। মনে করি, একটি গ্যাসাধারে N সংখ্যক অণু আছে, তাদের গতিবেগ যথাক্রমে c1, c2, c3, c4……cN। তখন বর্গমূল-গড়-বৰ্গবেগকে c দ্বারা চিহ্নিত করলে,

c = √ (c12 + c22 + c32 + c42+………..+ cN2) / N

RMS বেগ (c)-কে পরম তাপমাত্রা ও মোলার ভরের সাথে সম্পর্ক স্থাপন করে নিম্ন সমীকরণ দ্বারাও প্রকাশ করা হয়-

c = √ (3RT / M)

মনে রাখতে হবে, গ্যাসের অণুসমূহের মোট গতিশক্তি নির্ণয়ের জন্য RMS বেগ জানা প্রয়োজন।

বর্গমূল-গড়-বর্গ গতিবেগ প্রয়োজনীয় কেন?

বর্গমূল-গড়-বর্গ গতিবেগ (c) হচ্ছে এমন একটি বেগ, যা প্রতিটি অণুর সাধারণ গতিবেগ ধরে অণুসমূহের গতিশক্তি হিসাব করলে তাদের প্রকৃত মোট গতিশক্তি পাওয়া যায়। গড় গতিবেগ (c) বা সবচেয়ে সম্ভাব্য গতিবেগ হতে সরাসরি গতিশক্তি পাওয়া যায় না। মনে করি একটি গ্যাসের নমুনায় N সংখ্যক অণু আছে, এদের গতিবেগ যথাক্রমে c1, c2. c3……cN এবং প্রতিটি অণুর ভর m.

অণুসমূহের মোট গতিশক্তি

= 1/2 mc12 + 1/2 mc22 + 1/2 m32 +…….+ 1/2 mcN2

= 1/2 m (c12 + c22 + c32 +……+ cN2) ———-(1)

আবার প্রতিটি অণুর সাধারণ গতিবেগ c ধরা হলে প্রতিটি অণুর গতিশক্তি = (1/2)mc2। সুতরাং N টি অণুর সর্বমোট গতিশক্তি

= (1/2) mNc2

= (1/2) mN [√(c12 + c22 + c32 +……..+cN2) / N] ——–(2)

= (1/2) mN [(c12 + c22 + c32 +……..+cN2) / N]

= (1/2) m (c12 + c22 + c32 +……..+cN2)

সমীকরণ (1) ও (2) তুলনা করলে দেখা যায় যে, বর্গমূল-গড়-বর্গ গতিবেগকে প্রতিটি অণুর সাধারণ গতিবেগ ধরে অণুসমূহের মোট গতিশক্তি হিসাব করা হলে তা প্রকৃত গতিশক্তির সমান হয়।

পড়াশোনা সংক্রান্ত বিভিন্ন বিষয় নিয়ে শত শত ভিডিও ক্লাস বিনামূল্যে করতে জয়েন করুন আমাদের Youtube চ্যানেলে-

www.youtube.com/crushschool

ক্রাশ স্কুলের নোট গুলো পেতে চাইলে জয়েন করুন আমাদের ফেসবুক গ্রুপে-

www.facebook.com/groups/mycrushschool